Arsenic exposure and respiratory outcomes during childhood in the INMA study.
Por:
Signes-Pastor AJ, Díaz-Coto S, Martinez-Camblor P, Carey M, Soler-Blasco R, García-Villarino M, Fernández-Somoano A, Julvez J, Carrasco P, Lertxundi A, Santa Marina L, Casas M, Meharg AA, Karagas MR and Vioque-Lopez J
Publicada:
9 sep 2022
Ahead of Print:
9 sep 2022
Resumen:
Ingested inorganic arsenic (iAs) is a human carcinogen that is also linked to other adverse health effects, such as respiratory outcomes. Yet, among populations consuming low-arsenic drinking water, the impact of iAs exposure on childhood respiratory health is still uncertain. For a Spanish child study cohort (INfancia y Medio Ambiente-INMA), low-arsenic drinking water is usually available and ingestion of iAs from food is considered the major source of exposure. Here, we explored the association between iAs exposure and children's respiratory outcomes assessed at 4 and 7 years of age (n = 400). The summation of 4-year-old children's urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) was used as a biomarker of iAs exposure (?As) (median of 4.92 µg/L). Children's occurrence of asthma, eczema, sneeze, wheeze, and medication for asthma and wheeze at each assessment time point (i.e., 4- and 7-year) was assessed with maternal interviewer-led questionnaires. Crude and adjusted Poisson regression models using Generalized Estimating Equation (GEE) were performed to account for the association between natural logarithm transformed (ln) urinary ?As in µg/L at 4 years and repeated assessments of respiratory symptoms at 4 and 7 years of age. The covariates included in the models were child sex, maternal smoking status, maternal level of education, sub-cohort, and children's consumption of vegetables, fruits, and fish/seafood. The GEE-splines function using Poisson regression showed an increased trend of the overall expected counts of respiratory symptoms with high urinary ?As. The adjusted expected counts (95% confidence intervals) at ln-transformed urinary ?As 1.57 (average concentration) and 4.00 (99th percentile concentration) were 0.63 (0.36, 1.10) and 1.33 (0.61, 2.89), respectively. These exploratory findings suggest that even relatively low-iAs exposure levels, relevant to the Spanish and other populations, may relate to an increased number of respiratory symptoms during childhood.
Filiaciones:
:
Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain
CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
Díaz-Coto S:
Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
Martinez-Camblor P:
Biomedical Data Science Department, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
Carey M:
Institute for Global Food Security, School of Biological Sciences Building, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
Soler-Blasco R:
Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
García-Villarino M:
CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA)-Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain
Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
Fernández-Somoano A:
CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA)-Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain
Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
Julvez J:
CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
Carrasco P:
Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
Department of Medicine, Universitat Jaume I, Castellon de la Plana, Spain
Lertxundi A:
CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Department of Preventive Medicine and Public Health, UPV/EHU, Leioa, Basque Country, Spain
Health Research Instititue, Biodonostia, Donostia-San Sebastian, Spain
Santa Marina L:
CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Health Research Instititue, Biodonostia, Donostia-San Sebastian, Spain
Department of Health of the Basque Government, Public Health Division of Gipuzkoa, Donostia-San Sebastián, Spain
Casas M:
ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
Universitat Pompeu Fabra, Barcelona, Spain
Meharg AA:
Institute for Global Food Security, School of Biological Sciences Building, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
Karagas MR:
Biomedical Data Science Department, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
:
Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain
CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
Green Published, gold
|